Scalable Backpropagation for Gaussian Processes using Celerite
نویسندگان
چکیده
منابع مشابه
Scalable Gaussian Processes for Supervised Hashing
We propose a flexible procedure for large-scale image search by hash functions with kernels. Our method treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present an efficient inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and paral...
متن کاملProduct Kernel Interpolation for Scalable Gaussian Processes
Recent work shows that inference for Gaussian processes can be performed efficiently using iterative methods that rely only on matrix-vector multiplications (MVMs). Structured Kernel Interpolation (SKI) exploits these techniques by deriving approximate kernels with very fast MVMs. Unfortunately, such strategies suffer badly from the curse of dimensionality. We develop a new technique for MVM ba...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملScalable Structure Discovery in Regression using Gaussian Processes
Automatic Bayesian Covariance Discovery (ABCD) in Lloyd et al. (2014) provides a framework for automating statistical modelling as well as exploratory data analysis for regression problems. However ABCD does not scale due to its O(N) running time for the kernel search. This is undesirable not only because the average size of data sets is growing fast, but also because there is potentially more ...
متن کاملThoughts on Massively Scalable Gaussian Processes
We introduce a framework and early results for massively scalable Gaussian processes (MSGP), significantly extending the KISS-GP approach of Wilson and Nickisch (2015). The MSGP framework enables the use of Gaussian processes (GPs) on billions of datapoints, without requiring distributed inference, or severe assumptions. In particular, MSGP reduces the standard O(n) complexity of GP learning an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Research Notes of the AAS
سال: 2018
ISSN: 2515-5172
DOI: 10.3847/2515-5172/aaaf6c