Scalable Backpropagation for Gaussian Processes using Celerite

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Gaussian Processes for Supervised Hashing

We propose a flexible procedure for large-scale image search by hash functions with kernels. Our method treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present an efficient inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and paral...

متن کامل

Product Kernel Interpolation for Scalable Gaussian Processes

Recent work shows that inference for Gaussian processes can be performed efficiently using iterative methods that rely only on matrix-vector multiplications (MVMs). Structured Kernel Interpolation (SKI) exploits these techniques by deriving approximate kernels with very fast MVMs. Unfortunately, such strategies suffer badly from the curse of dimensionality. We develop a new technique for MVM ba...

متن کامل

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

Scalable Structure Discovery in Regression using Gaussian Processes

Automatic Bayesian Covariance Discovery (ABCD) in Lloyd et al. (2014) provides a framework for automating statistical modelling as well as exploratory data analysis for regression problems. However ABCD does not scale due to its O(N) running time for the kernel search. This is undesirable not only because the average size of data sets is growing fast, but also because there is potentially more ...

متن کامل

Thoughts on Massively Scalable Gaussian Processes

We introduce a framework and early results for massively scalable Gaussian processes (MSGP), significantly extending the KISS-GP approach of Wilson and Nickisch (2015). The MSGP framework enables the use of Gaussian processes (GPs) on billions of datapoints, without requiring distributed inference, or severe assumptions. In particular, MSGP reduces the standard O(n) complexity of GP learning an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research Notes of the AAS

سال: 2018

ISSN: 2515-5172

DOI: 10.3847/2515-5172/aaaf6c